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ABSTRACT

Collection efficiency and ice accretion calculations have been made for a sphere, a swept
MS(1)-317 wing, a swept NACA-0012 wing tip, an axisymmetric inlet, and a Boeing 737-300
inlet using the NPARC flow solver and the NASA Lewis LEWICE3D grid based ice accretion
code. Euler flow solutions for the geometries were generated using the NPARC flow solver. The
LEWICE3D grid based ice accretion program was used to calculate the impingement efficiencies
and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30
minute hold condition. All calculations were performed on an SGI Model Power Challenge
Ccomputer. The results have been compared to experimental flow and impingement data. In gen-
eral, the calculated flow and collection efficiencies compared well with experiment, and the ice
shapes looked reasonable and appeared representative of the rime and mixed icing conditions for
which they were calculated.
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SUMMARY

Collection efficiency and ice accretion calculations have been made for a sphere, a swept
MS(1)-317 wing, a swept NACA-0012 wing tip, an axisymmetric inlet, and a Boeing 737-300
inlet using the NPARC flow solver and the NASA Lewis LEWICE3D grid based ice accretion
code. Euler flow solutions for the geometries were generated using the NPARC flow solver. The
LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and
ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute
hold condition. All calculations were performed on an SGI Power Challenge computer. The
results have been compared to experimental flow and impingement data. In general, the calculated
flow and collection efficiencies compared well with experiment, and the ice shapes looked reason-
able and appeared representative of the rime and mixed icing conditions for which they were cal-
culated.

NOMENCLATURE

AOA Angle-of-attack, degrees
C Chord length, m



Cp Pressure coefficient

d Droplet diameter, um

HTC Heat transfer Coefficient, W/m%/K
K Roughness factor, m

LWC Liquid Water Content, g/m>
MVD Median Volume Diameter, um
P Free stream pressure, Pa

S Surface distance, cm

t Ice accretion time, seconds

T Free stream temperature, K

v Free stream velocity, m/s

B Collection efficiency

L. INTRODUCTION

The last 15 years has brought great changes in the computer software and hardware indus-
try, changes which have given the design engineer a larger more sophisticated set of tools. A lit-
eral explosion of software has effected every level and aspect of engineering design. Engineers
now have quick, and accurate tools at their fingertips to handle just about any design task imagin-
able. Tasks that were once unmanageable or manageable only by small Computational Fluid
Dynamic (CFD) groups on expensive machines are now tractable by the ordinary design engineer.
Computer programs that once took 10 hours of computer time and 2 days of turnaround time can
now be done overnight on powerful, inexpensive workstations. Design tasks that were once
empirically based “arts” are now analytically based sciences. One such area that has benefitted
greatly from these changes has been the design of aircraft ice protection systems.

The task of aircraft ice protection system design which was previously one of subjectivity,
based heavily on correlation and extrapolation, and carried out by highly experienced individuals
is now one of objectivity, based on sound models and carried out by minimally experienced engi-
neers. Historically systems have been designed using the methods of ADS-4 (ref. 1). This entailed
interpolation or extrapolating from previously tested conditions and configurations. If a configura-
tion or condition didn’t exist in ADS-4 then various forms of extrapolation were used. As the air-
craft industry progressed the newer designs were less and less similar to those in the ADS-4
database and the task of interpolation or extrapolation became harder and riskier. With the advent
of the computer age numerical methods were made available, reducing the guess work. Many 2D
and some 3D methods are now available to aid the user in designing an aircraft ice protection sys-
tem (ref. 2-6). This paper outlines one such 3D method and presents validation for a variety of 3D
geometries.

Flow, trajectory and ice accretion calculations were made and compared to experiment for
several 3D geometries using the NPARC flow solver (ref. 7) and the grid based NASA Lewis 3D
ice accretion code LEWICE3D (ref. 6). The cases were chosen to illustrate the flexibility and to
provide validation for the computer code.



The grid based LEWICE3D code is very similar to the panel based version and incorpo-
rates the same trajectory and ice accretion methodology. The codes are different, in that the grid
based code does not incorporate a flow solver but is dependent on the user to supply one. Several
advantages of this are the ability to handle a users particular flow solver and the fact that the grid
based trajectory codes are significantly faster than the panel based trajectory codes. The code can
handle generic multi-block, structured or unstructured grids with symmetry planes. Performance
differences can be as high 200 to 1 between the panel and grid based methods with a typical grid
based case (single section of interest, single drop size) taking about 2.5 minutes on an SGI Model
Power Challenge computer.

Computational and experimental results are presented for flow, and collection efficiency
for 6 geometries. These cases included two spheres, a swept MS(1)-317 wing, a swept NACA-
0012 wing tip, an axisymmetric inlet and a Boeing 737-300 inlet. All of the flow calculations were
made using the NPARC flow solver except for the spheres. An analytical flow solution was used
for the sphere cases. All of the aerodynamic and collection efficiency data were taken during the
recent impingement efficiency tests, under a program funded by NASA and the FAA and carried
out by Wichita State University, Boeing Military Airplanes and NASA (ref. 8), except for the
spheres. The impingement efficiency data for the spheres was obtained during some of the early
IRT impingement efficiency tests in the 1950’s (ref. 9).

L EXPERIMENT
B. EXPERIMENTAL APPARATUS

The aerodynamic and impingement efficiency tests were carried out in the NASA Lewis
Icing Research Tunnel (IRT). The test equipment included the IRT (fig. 1), the ESCORT data sys-
tem, a special spray system for the impingement tests (fig. 2), a laser reflectometer for impinge-
ment efficiency data reduction (fig. 3), and the six models (fig. 4-8).

The IRT facility can provide a range of airspeeds, angles-of-attack, temperatures, liquid
water contents (LWC), and drop sizes (ref. 10). The IRT has a 2.47 m x 1.82 m test section with a
maximum airspeed of 134 m/s (empty tunnel). Angle-of-attack is controlled by a movable turnta-
ble to which the models are mounted. A refrigeration system allows year-round testing at temper-
atures from -29° C to 10° C. The spray system located upstream of the test section can provide a
cloud with a range of LWC of .25-3.0 gm/m?> and a median volume drop (MVD) size range of 12-

40 pm.

The Escort system was developed at Lewis to aid in storage, processing, and analysis of
large amounts of data (e.g. temperature, pressure) produced in various experiments at Lewis
Research Center. In this test Escort was used to store tunnel total temperature, total pressure, free
stream airspeed, surface pressure, produce real time calculations and display pertinent parameters.
The storage sequence for each data point was initiated by the researcher in the control room. A
separate program was used to do a more complete post run analysis.

The spray requirements for the impingement tests precipitated the need for a different
spray system (fig. 2) than was available in the IRT (ref. 8). The IRT spray system could not pro-



duce the short (2-5 seconds), stable sprays (i.e. constant LWC and drop size) required to prevent
blotter strip saturation. There were also concerns that the dye would contaminate the IRT spray
system. The new system consisted of 12 nozzles and a supply tank located at the IRT spray bar
station (fig. 2). The system featured short supply lines which enabled short, stable sprays.

One unique feature of the current technique is the laser reflectometer used to determine
the local collection efficiency (fig. 3). The device measures the local reflectance of the blotter strip
and correlates this to the local collection efficiency. The device saved considerable time in the
data reduction of the blotter strips.

The sphere data used here was obtained during impingement tests in 1957 (ref. 9). Figure
4 shows a schematic of the IRT sphere test configuration. Two spheres having diameters of 15.04
cm and 45.72 cm were tested at several MVD’s. Both models were made of laminated mahogany.

The swept MS(1)-317 model was constructed for the IRT test section (fig. 5). The model
was full span (6 foot) and had a three foot chord. The model had a 30° sweep angle and was made
of mahogany. The model was unusual in that the MS(1)-317 coordinates were applied in the free
stream flow direction and that the trailing edge was closed. This unusual design was thicker than
the usual swept MS(1)-317 defined in the leading edge normal direction.

The swept NACA-0012 wing tip model (fig. 6) was designed to have variable sweep and
so that it could be tested in both the IRT and on Twin Otter Icing Research Plane. The model had
was made of mahogany and had several removable end sections which allowed sweep angle con-
figurations of 0, 15, 30 and 45 degrees. The model had a chord of .4399 m (leading edge normal
direction) and a leading edge length of .7111 m.

The axisymmetric inlet and 737-300 inlet models (figs. 7,8) were both .2547 scale. The
models were provided by Boeing Commercial Airplane Company. The axisymmetric inlet was
outfitted with 34 static pressure taps while the 737-300 had 88. The axisymmetric inlet did not
have a centerbody, although the model was tested with a centerbody mount. The 737-300 had a
conical centerbody.

B. EXPERIMENTAL TESTING

Two types of testing were done in the IRT: acroperformance and impingement efficiency
testing. The aero-performance testing involved taking surface pressure measurements. The
impingement efficiency testing involved the use of a dye tracer technique to measure the location
and amount of water impinging on the model.

Surface pressures were measured on the inlet models using the ESCORT system. Pressure
measurements were taken at an airspeed of 77 m/s, at angles-of-attack of 0° and 15° and inlet
mass flows of 7.8 kg/s and 10.4 kg/s with the spray system off. Three sets of pressure measure-
ments were taken for each configuration to establish repeatability of the data.

The experimental technique used in the current tests to determine the impingement char-



acteristics of a body is one that was developed on the early 1950’s with a few modifications (ref.
8). The technique involved spraying a dye-water solution of a known concentration onto a model
covered with blotter strips. Figure 9 shows a typical blotter installation for the 737-300 inlet. The
result was that the local impingement efficiency rate was reflected on the blotter strips as a varia-
tion in color intensity. That is, the areas of higher impingement rate are darker and those with
lower impingement rate are lighter.

Several steps were necessary to prepare the IRT for impingement testing. The specially
designed spray system had to be installed and adjusted to produce a uniform cloud. The local
LWC had to be measured at each blotter strip location (with the tunnel empty) for every spray and
tunne] condition to account for any cloud nonuniformity that existed after the final spray adjust-
ment. After these adjustments and measurements were made the model was inserted and tested.
Each points was repeated five times to obtain a statistical average.

A typical test point for an airfoil involved several steps. The model was cleaned and blot-
ter strips were attached at points of interest. Figure 9 shows a typical blotter strip installation for
the 737-300 inlet and illustrates the angular reference system used in presenting the data.The
spray was then made, the blotter strips were removed, and labeled, and the model was cleaned and
made ready for the next condition.

Table I summarizes the test matrix for the impingement tests. All of the models were
tested for two drop sizes and at two angles-of-attack except for the spheres. The 45.72 cm sphere
was tested for MVD’s of 11.5, 14.7, 16.7 and 18.6 um the 15.04 cm sphere was tested for MVD’s
of 11.5, 16.7 and 18.6 pm.

II. ANALYTICAL METHOD

The NPARC flow solver was used to generate all of the grid based flow solutions except
for the spheres and the NASA Lewis grid based ice accretion code (LEWICE3D) was used for the
trajectory and ice accretion analysis. An analytical flow solution was used for the grid based
sphere cases. The LEWICE3D panel based computer program has been used in previous calcula-
tions of isolated, finite wings and full aircraft (ref. 11-15). The work presented here represents the
first application of the computationally similar grid based LEWICE3D to various bodies.

NPARC, formerly PARC, is a 3D CFD flow solver for application to compressible internal
and external flows (ref. 7). The code implements the Beam-Warming implicit algorithm to solve
the steady-state Euler or Navier-Stokes equations, as did the ARC3D code from which NPARC
was derived. An optional pseudo-Runge-Kutta algorithm allows NPARC to compute unsteady
flows. A Jameson-style artificial viscosity model is included to stabilize the solution. The viscous
mode of NPARC allows prediction of turbulent flow via the availability of several turbulence
models including P.D. Thomas, Baldwin-Lomax, Chien k-epsilon, Baldwin-Barth, and RNG.
NPARC accepts multi-block structured grids as long as adjacent grids overlap by at least one grid
cell at their interfaces. Blocks may overlap by wide margins, or be embedded entirely within other
blocks, to ease the modeling of difficult geometries as well as to resolve local geometry and flow
features. Additional modeling flexibility is provided by NPARC’s ability to allow internal walls,



whereby portions of a grid block are cordoned off from the solution by application of boundary
conditions to walls internal to a grid block.

For the current study, NPARC was run steady-state and inviscid (Euler mode). The two
inlet geometries and the NACA 0012 wing with tip were each modeled using two-block grids
while the MS-317 required only one block. Numerous boundary conditions are available to the
NPARC user. Examples employed in the current study include freestream, slip-walls, specified
mass-fluxes, imposed static pressures, collapsed-point pole singularities, block interfaces, and a
C-grid wake-cut for lifting surfaces.

NPARC calculation times varied for the different geometries depending upon the number
of grid points, the number of blocks and the type of boundary conditions used. The Euler flow cal-
culations were made using version 2.0 of NPARC on one processor (R8000) of an SGI Power
Challenge computer. The calculations were considered converged when the L2 residuals (ref. 7)
dropped 5 orders of magnitude. One iteration took about .87 cpu-seconds per 10,000 grid points,
regardless of geometry. For the wing geometries convergence took about 5000 iterations which
yielded calculation times of 5 hours and 25 hours respectively for the swept MS(1)-317 wing and
the swept NACA-0012 wing tip respectively. The calculation time for swept NACA-0012 wing
was about 5 times larger than that of the swept MS(1)-317 because the grid used to model the
swept NACA-0012 wing tip contained about 5 times the number of points used for the swept
MS(1)-317 wing. For the two inlet geometries, convergence occurred after about 15000 iterations
which resulted in calculation times of 130 hours and 80 hours for the axisymmetric and Boeing
737-300 inlets respectively. The inlets required larger numbers of iterations because of the way in
which the mass flow boundary condition is applied. NPARC iterates on the inlet exit pressure
until the correct mass flow is calculated through the inlet exit.

The LEWICE3D grid based code incorporates trajectory, heat transfer and ice shape cal-
culation into a single computer program with a multitude of capabilities. The code can handle
generic multiblock structured grid based flow solutions, unstructured grid based flow solutions
and simple cartesian grids with surface patches (allows generic panel code users a computation-
ally efficient mode for ice shape determination). The code can handle overlapping and internal
grids and can handle multiple planes of symmetry. Calculations of arbitrary streamlines and tra-
jectories are possible. The code has the capability to calculate tangent trajectories and impinge-
ment efficiencies for single droplets or droplet distributions. Ice accretions can be calculated at
arbitrary regions of interest in either a surface normal or tangent trajectory direction.

The methodology used in the LEWICE3D (ref. 6) analysis can be broken into six basic
steps for each section of interest at each time step. In the first step the flow field is generated by
the user. Secondly, surface streamlines are calculated. Thirdly, tangent trajectories are calculated
at the region of interest. An array of particles is released between the tangent trajectories in the
fourth step. These impacting particles are used to calculate collection efficiency as a function of
surface position. The fifth step involves interpolating or extrapolating the collection efficiencies
onto the streamlines. In the sixth step the ice accretion for the streamline is calculated.

There are three basic program elements contained in the LEWICE3D jobstream; a trajec-
tory analysis, a streamline analysis and an ice accretion analysis. The trajectory analysis is basi-



cally that of Hillyer Norment (ref. 16) with modifications by Bidwell (ref. 6). At the heart of the
trajectory analysis is the variable step predictor-corrector integration scheme by Krogh (ref. 17).
The surface streamline analysis uses a variable step size fourth-order Runge-Kutta integration
scheme developed by Bidwell (ref. 6). The ice accretion model is basically that of the
LEWICE2D code applied along surface streamlines (ref. 3).

LEWICE3D calculation times varied for the different cases depending upon the drop size,
the number of trajectories, the number of grid points, number of grid blocks, and type of grid
blocks. The LEWICE3D calculation times are heavily dependent upon grid size and structure
because the largest portion of the LEWICE3D calculation time (greater than 99%) is spent calcu-
lating velocities at specified points, which involves searching through the grid block for the cell in
which the point is located. The search algorithm employed is dependent upon integration step
size, grid cell size and orientation, the number of grid cells, the number of grid blocks and the ori-
entation of the grid blocks. The trajectory integration time for the cases varied from .2-10. sec-
onds. Average trajectory integration time was approximately 1.25 seconds for all of the cases.
Approximately 100 trajectories were required for each drop size at each section-of-interest. This
resulted in calculation times of approximately 1000 seconds for the wings and spheres (one sec-
tion-of-interest, 7 bin distribution) and approximately 5000 seconds for the inlet cases (5 sections-
of-interest, 7 bin distribution).

III. ANALYSIS

Surface velocity, heat transfer, collection efficiency, and ice shapes results are presented
for the five geometries tested. Ice shape calculations were made for two icing conditions simulat-
ing a rime and a mixed condition. Comparisons to experimental collection efficiency are made for
all of the cases and to experimental surface mach number or coefficient of pressure where avail-
able. Discussions of the icing conditions chosen, the LEWICE3D program parameters used, and
of the individual analysis are given below.

Two icing conditions were calculated for each data point in the collection efficiency
matrix (table I) for each model except for the sphere. Icing calculations were only run for the
smallest and largest MVD droplets for the spheres. The icing conditions were chosen to loosely
match a rime and a mixed hold condition. For the rime condition an icing time of 30 minutes, an
LWCof .2 g/m and a temperature of 243.1 K were used. For the mixed condition an icing time of
30 minutes, an LWC of .695 g/m3 and a temperature of 263.7 K were used.

The grid based LEWICE3D computer program parameters were chosen from experience,
correlations and a desire to limit the computational resources required. A 7 bin droplet distribution
was used in the calculations (table II). For the spheres cases a Langmuir-D distribution (ref. 18)
was used. This distribution was chosen as representative of the multicylinder and Jakowski airfoil
data taken by early researchers (ref. 9). For the remaining cases experimentally measured droplet
distributions (ref. 8) were used for the calculations (table IT). These distributions were measured
using laser droplet sizing instruments. The icing calculations were made using a single ice accre-
tion time step. A LEWICE roughness parameter (ref. 3) of .5mm was used for all of the cases.

Figures 10-14 depict the results for the two sphere calculations. A single block C-grid was



used for the calculations (fig. 4b). The grid, which used a y-plane of symmetry contained 92 radial
points, 91 chordwise grid points and 90 spanwise points. An incompressible, inviscid analytical
flow solution was used to generate the velocities at the grid points. Figure 12a shows the compar-
ison between the analytical and experimental coefficient of pressure for the front of the sphere.
The agreement is excellent. The stagnation heat transfer also compares well to previous data. The
collection efficiencies compare well for both spheres in both limits of impingement and maximum
collection efficiency except for the 45.15 cm sphere at 18.5 um. For this case the limits of
impingement are slightly underpredicted and the maximum collection efficiency is severely
underpredicted. This discrepancy could be due to relative error in the experiment or possibly due
to a measurement error of MVD or of droplet distribution in the early experiments. The average
repeatability for the impingement data is about +- 10%. Maximum differences can be as high 40%
for some cases.These large differences generally occur in very small regions near the peak collec-
tion efficiency for geometries with relatively sharp leading edges. These differences are not con-
sidered as a serious condemnation of the experimental technique because they occur for over
small regions and do not involve much total water. Modern calibrations of the IRT nozzles, which
are similar to those in the 1950’s, differ considerably from the early calibrations in both MVD and
distribution at the 18.5 um condition. Future work is planned to explore this discrepancy. Figure
14 depicts the analytically predicted ice shapes for the spheres. Although no experimental data
was available for comparison the ice shapes look indicative of the rime and glaze conditions from
which they were generated.

The swept MS(1)-317 results are shown in figures 15-18. A single-block C-grid was used
for the calculations (fig. 5b). The grid contained 5 spanwise grid planes, 277 chordwise grid
points and 30 radial grid points. At the first and last spanwise grid planes, a contiguous boundary
condition was imposed which communicated flow information directly between the first and last
plane, effectively making the calculation model a wing of infinite span. No attempt was made to
represent the tunnel walls in the grid. The figures depict parameter plots of percent chord or sur-
face distance along a cut in the flow direction at the center span location. Surface distance was
measured from the highlight, with positive values being on the underside of the wing and negative
values being on the upper side of the wing. The ice shapes were generated in a leading edge nor-
mal direction.

Figures 15, 16 show the coefficient of pressure and heat transfer distributions for the 0 and
8 degree conditions. Although no experimental data was available for these conditions the distri-
butions look reasonable.

The collection efficiency comparisons for the swept MS(1)-317 are shown in figure 17. In
general, the impingement limits are overpredicted and the maximum collection efficiency is
underpredicted. The comparisons appear reasonable considering the experimental repeatability
for all but the 20 pum, 8° AOA case for which the maximum collection efficiency is severely
underpredicted. The discrepancy is probably due to the less than idealistic flow realized for the 8°
AOA case and the inability of the steady Euler calculation to pick it up. Flow separation may have
occurred for this case due to the unusually thick (i.e. 17% in the flow direction) nature of the
model, the relatively high AOA, and finite span of the tunnel.

Figure 18 shows the ice shapes for the rime and mixed conditions. Although no experi-



mental data were available for these conditions the ice shapes looked reasonable and representa-
tive of the conditions for which they were generated. The rime shapes reflect the heavy influence
of the collection efficiency distribution and the mixed shapes reflect the heavy influence of the
heat transfer distribution. For the rime case the droplets will essentially freeze upon impact giving
rise to a ice thickness distribution and ice shape that resembles the collection efficiency distribu-
tion. For mixed and glaze shapes more water is available at the leading edge than can immediately
freeze resulting in a freezing fractions of less than one. This implies that the ice thickness distribu-
tion, and hence the ice shape, will resemble the heat transfer coefficient distribution. If transition
occurs horns will be formed near the transition location due to the sharp increase in heat transfer
at transition.

The results for the swept NACA-0012 wing tip are shown in figures 19-22. A 2 block grid
was used for the calculations (fig. 6b). A C-grid with 25 spanwise stations, 183 chordwise stations
and 35 radial stations was used to cover the wing the from the root to tip. A second C-O grid
which had 92 chordwise points, 35 radial points and 15 circumferential grid points was used to
model the circular endcap. No attempt was made to include the IRT tunnel walls or the model
support structure in the grid construction. The grid contained a plane-of-symmetry at the wing
root. The parameter plots involving surface distance and chord length were made along vertical
cuts in the flow direction. Surface distance was measured from the highlight, with positive values
being on the underside of the wing and negative values being on the upper side of the wing. The
ice shapes were generated in a leading edge normal direction.

Figures 19 and 20 show the coefficient of pressure distributions and heat transfer distribu-
tions. The results look reasonable. Although no pressure or heat transfer data was available com-
parisons to unswept data using the infinite swept assumption (i.e. multiplying the unswept
coefficient of pressure by the square of the cosine of the sweep angle and the heat transfer coeffi-
cient by the square root of the cosine of the sweep angle) were good. When LEWICE2D results
were corrected for sweep, the maximum pressure coefficient for the 0° AOA case was -.317. This
agreed well with the -.304 value calculated using LEWICE3D. When the LEWICE2D stagnation
heat transfer coefficient was corrected for sweep a value of 374 W/m%/K was found for the 0°
AOA case. This agreed reasonably with the LEWICE3D value of 340 W/m%K considering the
differences in the coefficient of pressure at this angle-of-attack.

The collection efficiency results for the swept NACA-0012 swept wing tip are shown in
figure 21. The agreement in overall shape of the curve, area under the curve and maximum collec-
tion efficiency look good considering the repeatability of the data. The worst agreement occurs for
the 8° AOA, 20 um MVD case where the maximum collection efficiency is underpredicted by
36% and the lower impingement limit is overpredicted by a whopping 200%. The disagreement in
the lower impingement at the higher angle-of-attack, which is not uncommon for 2D and 3D
cases, is disconcerting. But it must be pointed out that these type of absolute comparisons are not
quite fair in judging the validity of the theoretical method. The experimental technique used here
does not yield exact impingement limits. The subtraction technique used in the data reduction
combined with the insensitivity of the laser to low collection efficiencies, which occur near the
impingement limits, gives rise to an error in the estimation of the impingement limit. Further, it is
difficult to know exactly how large this error is because no other independent, more accurate
method is available for providing imipingiment limit measurement. Keeping this in mind compar-



ing the collection efficiency curves in the 8° AOA, 20 um MVD case (fig. 21d) we might consider
the agreement for the lower impingement limit reasonable. The agreement in the collection effi-
ciency from the 3-10 cm region is excellent, after which the experimental data ends rather
abruptly and the analytical results tend to zero in a smooth fashion.

Ice shapes for the swept NACA-0012 wing tip are shown in figure 22. The ice shapes were
reasonable considering the conditions for which they were generated, the collection efficiency
distribution and the heat transfer distribution.

Figures 23-30 summarize the results for the axisymmetric inlet. A 2 block grid with a y-
plane of symmetry was used for calculations (fig. 7b). The first block consisted of an O-grid
which extended from the rear of the inlet to freestream. The grid contained 29 axial grid points, 29
radial grid points and 45 circumferential grid points. Embedded inside the first block, the second
block consisted of a C-O grid which modeled the inlet geometry. The grid block had 99 chordwise
grid points, 35 radial grid points and 89 circumferential grid points. The amount of mass-flow
through the inlet, known from the experiment, was imposed on the exit plane of the inlet grid by
use of NPARC’s mass-flow boundary condition. The ice shape and parameter plots were all made
along radial cuts parallel to the flow direction.

The surface mach number and heat transfer distributions are presented in figures 23,24. In
general, the agreement between the experimental and computed surface mach number is excel-
lent. Although no experimental data was available for the heat transfer distributions, the analytical
results appear reasonable in that they follow trends set by the surface mach number distributions
(i.e where there are high mach number gradients there are high heat transfer coefficients). The
heat transfer distribution trends with respect to mass flow and angle-of-attack also look reason-
able. In general, increasing mass flow caused the peak heat transfer to increase on the inside of the
inlet and to decrease on the outside of the inlet. Increasing the angle-of-attack resulted in opposite
trends for the heat transfer on the lower and upper inlet lips. For the lower inlet lip the peak heat
transfer decreased on the inside of the inlet and increased on the outside of the inlet. For the upper
lip the peak heat transfer increased on the inside of the inlet and decreased on the outside of the
inlet.

Figures 25, 26 show the collection efficiency results for the axisymmetric inlet. The agree-
ment is excellent. The experimental and computational results agree well in shape of curve, area
under the curve, maximum collection efficiency and impingements limits.

The computed ice shapes are presented in figures 27-30. Although no experimental data
was available the results looked consistent with the conditions for which the shapes were gener-
ated, and with the collection efficiency distribution and with the heat transfer distribution. The
location, size and shape of the ice shapes can be more easily understood if we think of the results
in terms of local angle-of-attack. If we think in terms of local angle-of-attack of the inlet lip then
2D wing icing experience can be used. We will define the local angle-of-attack to be measured in
the radial plane containing the inlet lip, and measured from the highlight of the lip with values
towards the inside of the inlet being negative and those towards the outside of the inlet being pos-
itive. In this system for a axisymmetric inlet at 0 AOA the local angle-of-attack will be the same
at any radial cut. The local angle-of-attack is a function of inlet mass flow and inlet angle-of-
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attack. At a given inlet angle-of-attack the local relative angle-of-attack increases with decreasing
mass flow. At a given mass flow increasing the angle-of-attack increases the relative angle-of-
attack of the lower inlet lip, and decreases the relative angle-of-attack of the upper inlet lip. From
2D experience we know that as we increase angle-of-attack the ice shapes will accrete more
towards the underside of the geometry. From this and our above definition of local angle-of-attack
we can make several generalizations about the location of the ice shapes. At a given positive inlet
angle-of-attack the ice shape will transition from more towards the outside of the inlet to more
towards the inside of the inlet as we traverse from the lower lip around the inlet to the upper lip.
For a given inlet angle-of-attack increasing the mass flow will result in an ice shape that is more
towards the outside of the inlet. These trends are more readily observable for the mixed ice condi-
tions in the figures.

The results for the 737-300 inlet are shown in figures 31-38. A 2 block grid with a y-plane
of symmetry was used for calculations (fig. 8b). The 2-block computational grid was arranged in
the manner of the previously described axisymmetric grid. The first grid block contained 42 axial
grid points, 42 radial grid points and 25 circumferential grid points. The second grid block had 80
chordwise grid points, 30 radial grid points and 73 circumferential grid points. As for the axisym-
metric inlet, mass flow quantities measured in the experiment were imposed on the exit plane of
the Boeing 737-300 inlet.The ice shape and parameter plots were made along radial cuts parallel
to the flow direction.

The surface mach number and heat transfer distributions are presented in figures 31,32. In
general, the agreement between the experimental and computed surface mach number is good.
Although no experimental data was available for the heat transfer distributions, the analytical
results appear reasonable in that they follow trends set by the surface mach number distributions.

Figures 33, 34 show the collection efficiency results for the 737-300 inlet. The agreement
is excellent. The experimental and computational results agree well in shape of curve, area under
the curve, maximum collection efficiency and impingements limits.

The computed ice shapes are presented in figures 35-38. Although no experimental data
was available the results looked consistent with the conditions for which the shapes were gener-
ated, and with the collection efficiency distribution and with the heat transfer distribution.

V. CONCLUSION

The grid based LEWICE3D-NPARC combination proved to be an inexpensive, flexible,
accurate ice protection system design tool. The flow and ice accretion calculations were done
quickly, cheaply and accurately for a range of 3D configurations.

The NPARC, grid based LEWICE3D, SGI Power Challenge computer combination was,
in general, inexpensive to operate. The Euler flow calculations took on the average of 15 hours for
an isolated wing case and 100 hours for an isolated inlet case on the SGI Power Challenge com-
puter. The ice accretion calculations required about 20 minutes per section-of-interest using a
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seven bin distribution. These run times imply LEWICE3D execution times on the order of several
hours for full aircraft configurations.

The NPARC and grid based LEWICE3D codes proved to be flexible. The codes were used
to calculate ice accretions for cases with external and internal flow with and without planes of
symmetry. The codes were used with multiblock grids with overlapped and imbedded blocks and
with a variety of boundary conditions.

In general, the calculations for surface velocity, heat transfer, collection efficiency and ice
shape compared well with experiment where data was available and with intuition where no data
was available. The surface velocities for spheres and inlets agreed well with experiment.
Although no experimental data was available for the swept wings the surface pressure compared
reasonably to unswept results using the infinite sweep correction. The stagnation heat transfer for
the sphere compared well with experiment. The stagnation heat transfer for the swept NACA-
0012 wing tip compared reasonably well to 2D results using the infinite sweep correction.
Although no heat transfer data was available for the inlets, the results correctly followed velocity
gradient, mass flow and angle-of-attack trends and appeared reasonable. The calculated collection
efficiency compared favorably for all cases considering the inviscid flow approximation used and
the repeatability and accuracy of the collection efficiency data. The ice shape predictions
appeared reasonable and representative of the conditions from which they were derived. The rime
and mixed shapes followed trends set by the collection efficiency and heat transfer coefficient,
respectively.
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TABLE I. - IMPINGEMENT EFFICIENCY TEST MATRIX.

Descrption” Degiees) | How sy | MVD Gum
15.04 cm Sphere** - - 11.5, 16.7, 18.6
45.72 cm Sphere** - - 11.5,14.7, 167, 18.6
Swept MS(1)-317 Wing # 0,8 - 16.4, 20.4
Swept NACA-0012 Wing Tip 0,8 - 16.4, 20.4
Axisymmetric Engine Inlet + 0,15 7.8,10.4 16.4, 20.4
Boeing 737-300 Engine Inlet 1, 0,15 7.8,10.4 16.4,20.4

*  All tests were performed at a tunnel air temperature of approximately 10° C, and at an indicated airspeed of

approximatley 73-78 m/s.
** Models tested in 1957.

1 Models tested in September 1985

+ Models tested in Aprit 1989

TABLE I1. - DISCRETIZED DROPLET DISTRIBUTIONS USED IN CALCULATIONS.

d(/MVD
%LWC | Mmvp, MVD, MVD, MVD, MVD, MVD,
11.5 pum* 14.7 pm* 16.4 umt 16.7 um* 18.6 um* 20.4 umt

5 31 31 3161 31 31 2770
10 52 52 4981 52 52 4460
20 71 71 6872 71 71 6617
30 1.00 1.00 1.000 1.00 1.00 1.0000
20 1.37 1.37 13737 137 137 1.5865
10 1.74 1.74 1.9614 174 1.74 2.2943
5 2.22 222 2.8288 222 222 3.2542

*  Langmuir-D distribution.

t  Distribution measured at AEDC.
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Figure 3. - Automated Reflectometer used to reduce impingement data.
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Figure 4. - Sphere model.
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(a) Installation in IRT.
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(b) NPARC grid model.

Figure 5. - Swept MS(1)-317 wing.
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Figure 6. - Swept NACA-0012 wing tip.
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Figure 7. - Axisymmetric inlet.

(2) Installation in IRT. (b) NPARC grid model.

Figure 8. - Boeing 737-300 inlet.
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Figure 9. - Nustration of inlet blotter strip orientation..
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Figure 10. - Theoretical coefficient of pressure and heat transfer coefficient for a 15.04 cm sphere.
Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 11. - Comparison of experimental and theoretical collection efficiency for a 15.04 cm
sphere. Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 12. - Theoretical coefficient of pressure and heat transfer coefficient for a 45.72 cm sphere.
Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 13. - Comparison of experimental and theoretical collection efficiency for 45.72 cm sphere.
Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 14. - Theoretical ice shapes for a 45.72 cm and a 15.04 cm sphere. Icing conditions: Air-
speed, 75 m/s; icing time, 30 minutes; static pressure 95840 Pa.
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Figure 15. - Theoretical coefficient of pressure for the swept MS(1)-317 wing. Airspeed, 75 m/s;
static temperature, 7° C; static pressure 95840 Pa.
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Figure 16. - Theoretical heat transfer for the swept MS(1)-317 wing. Airspeed, 75 m/s; static tem-
perature, 7° C; static pressure 95840 Pa.
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Figure 17. - Comparison of experimental and theoretical collection efficiency for the swept
MS(1)-317 wing. Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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m/s; icing time, 30 minutes; static pressure 95840 Pa.
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Figure 19. - Theoretical coefficient of pressure for the swept NACA-0012 wing tip. Airspeed, 75
m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 20. - Theoretical heat transfer coefficient for the swept NACA-0012 wing tip. Airspeed, 75
m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 21. - Comparison of experimental and theoretical collection efficiency for the swept
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Figure 22. - Theoretical ice shapes for the swept NACA-0012 wing tip. Icing conditions: airspeed,
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Figure 29. - Theoretical ice shapes for the axisymetric inlet for o = 15°. Icing conditions: air-
speed, 75 m/s; icing time, 30 minutes; static temperature, -29.9° C, liquid water content,

.2 g/m3.
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Figure 30. - Theoretical ice shapes for the axisymetric inlet for o = 15°. Icing conditions: air-
speed, 75 m/s; icing time, 30 minutes; static temperature, -9.3° C, liquid water content,

695 g/m3.
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Figure 31. - Comparison of experimental and theoretical surface Mach numbers for the Boeing
737-300 inlet.
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Figure 33. - Experimental and theoretical collection efficiency for the Boeing 737-300 inlet for o =

0°. Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 34. - Experimental and theoretical collection efficiency for the Boeing 737-300 inlet for o0 =
15°. Airspeed, 75 m/s; static temperature, 7° C; static pressure 95840 Pa.
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Figure 35. - Theoretical ice shapes for the Boeing 737-300 inlet for o. = 0°. Icing conditions: air-
speed, 75 m/s; icing time, 30 minutes; static temperature, -29.9° C, liquid water content,
.2 g/m3.
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Figure 36 - Theoretical ice shapes for the Boeing 737-300 inlet for o. = 0°. Icing conditions: air-
speed, 75 m/s; icing time, 30 minutes; static temperature, -9.3° C, liquid water content,

695 g/m3.
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Figure 37. - Theoretical ice shapes for the Boeing 737-300 inlet for o = 15°. Icing conditions: air-
speed, 75 m/s; icing time, 30 minutes; static temperature, -29.9° C, liquid water content,
.2 g/m3.
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Figure 38 - Theoretical ice shapes for the Boeing 737-300 inlet for o = 15°. Icing conditions: air-
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